viernes, 27 de noviembre de 2009

Un nuevo dispositivo atrapa células cancerígenas como si fueran moscas

Importantisimo artículo cientifico que no debemos dejar de leer.

La combinación de microchips y metamateriales posibilita la mejora de tratamientos


Científicos de la Universidad de California en Los Ángeles han desarrollado un novedoso dispositivo de tamaño nanométrico que atrapa células cancerígenas siguiendo un método similar al del papel pegajoso que se utiliza para capturar moscas. Se trata de un chip que está recubierto por un metamaterial llamado nanopillar, con el que se ha conseguido reducir el tiempo y aumentar la eficiencia de los diagnósticos. La importancia del invento radica en que ayudaría a detectar a tiempo posibles metástasis, que son la principal causa de muerte en enfermos de cáncer. Por Yaiza Martínez.



Fuente: Everystockphoto.
Científicos de la Universidad de California en Los Ángeles (UCLA) han desarrollado un novedoso dispositivo de tamaño nanométrico que atrapa células cancerígenas siguiendo un método similar al del papel adhesivo que se utiliza para capturar moscas.

Según informa la UCLA en un comunicado las células cancerígenas presentes en la sangre y que se desprenden de los tumores, podrían quedar con este sistema inmovilizadas para su posterior estudio.

Estas células libres son conocidas como células tumorales circulantes (CTCs), y pueden proporcionar una información clave para el diagnóstico de la metástasis del cáncer, determinar el pronóstico del paciente, y ayudar a conocer la efectividad de las terapias aplicadas.

Biopsias líquidas

La metástasis, que es la causa más común de los fallecimientos de los enfermos de cáncer, se produce porque células cancerígenas sueltas abandonan el primer tumor y, circulando por la corriente sanguínea forman nuevas colonias celulares en otras partes del cuerpo.

Actualmente, los controles estándar del estado de los tumores consisten en análisis de muestras de biopsia de tumores sólidos, pero en los estados iniciales de la metástasis a menudo resulta difícil identificar el lugar nuevo donde biopsiar.

Si se pueden capturar las CTCs, los médicos podrían esencialmente realizar biopsias “líquidas”, permitiendo una temprana detección de la expansión de la enfermedad, así como mejorar el control de los tratamientos.

Hasta ahora, se habían desarrollado diversos métodos para rastreas las CTCs, pero el “papel para moscas” de los científicos de la UCLA parece ser más rápido y barato que dichos métodos, además de capturar muchas más células tumorales circulantes que éstos.

Recubierto por un metamaterial

En un estudio publicado por la revista especializada Angewandte Chemie, los científicos de la UCLA explican que el dispositivo consiste en un chip de silicio de entre uno y dos centímetros que está densamente recubierto por un metamaterial conocido como nanopillar.

Los metameteriales son materiales diseñados para poseer propiedades que no se encuentran disponibles en la Naturaleza. Estas propiedades se generan gracias a la estructura de dichos materiales, más que a su composición.

Para probar la efectividad del nanopillar como captor de células, los investigadores incubaron el chip en un cultivo con células de cáncer de pecho.

Al mismo tiempo, se realizó un experimento paralelo con un método de captura celular en el que se utilizó un chip de superficie plana. Ambas estructuras fueron recubiertas con una proteína que podía ayudar a reconocer y a atrapar células tumorales.

Así, se descubrió que la efectividad del chip de nanopillar en atrapar CTCs fue mucho mayor que la del otro chip. Concretamente, este chip atrapó entre un 45 y un 65% de células cancerígenas, mientras que el otro sólo pudo atrapar entre un 4 y un 14%.

Según explica el director de la investigación, Shutao Wang, del Crump Institute for Molecular Imaging de la Escuela de Medicina David Geffen School de la UCLA, el chip de nanopillar capturó más de 10 veces la cantidad de células atrapadas por el otro chip de estructura plana.

Detección en menos tiempo

Esta eficiencia se debe a la superficie única y nanométrica del chip de nanopillar. Estos resultados demuestran que dicha superficie ayudar al chip a interactuar con los componentes de tamaño nanométrico de las superficies de las células presentes en la sangre.

El tiempo requerido para la detección de CTCs utilizando una tecnología actual conocida como CellSearch, aprobada por la Administración de Medicamentos y Alimentos norteamericana, es de entre tres y cuatro horas. Con el chip de nanopillar este tiempo se redujo a sólo dos horas.

El chip de nanopillar se puede además utilizar en incubadoras estándar para cultivos celulares. Una vez que capta las células cancerígenas, se usa un microscopio de fluorescencia para identificar y contar dichas células.

Los científicos esperan que este sistema sirva como alternativa apropiada y eficiente para la detección de CTCs con equipos corrientes de laboratorio.

El próximo paso de la investigación será la realización de pruebas clínicas para comprobar como funciona el chip de nanopillar directamente con sangre de pacientes, e incluso con otros fluidos corporales, como la orina.

Chips anteriores

Ésta no es la primera vez que se usa un chip para registrar la existencia de CTCs en el organismo. El año pasado, el National Institute of Biomedical Imaging and Bioingeneering (NIBIB) de Estados Unidos creó una tecnología microchip para idénticos fines.

Según publicó el NIBIB en un comunicado, el CTC-chip desarrollado puede aislar las CTCs de la sangre entera. Del tamaño de una tarjeta de crédito, este chip contiene miles de puntos terminales microscópicos (micropostes) recubiertos de anticuerpos que se adhieren a la proteína EpCAM, que se encuentra en la superficie de las células en más del 85% de todos los cánceres.

Las pruebas realizadas demostraron que este chip puede detectar CTCs en las muestras de sangre de más del 99% de pacientes con cáncer metastásico.

Por otro lado, en 2007, científicos del Hospital General de Massachusetts, en Estados Unidos, crearon también un microchip de silicio del tamaño de una tarjeta de visita, cuya superficie estaba formada por unos 79 mil orificios recubiertos con un anticuerpo.

Este dispositivo fue probado con 68 pacientes con cáncer avanzado de pulmón, próstata, mama, páncreas y colon. De los 116 análisis realizados, el chip identificó células circulantes en 115 casos, según publicó entonces la revista Nature.
Fuente:Tendencias21


martes, 17 de noviembre de 2009

Primeras pruebas para fabricar micro robots en cadena


Primeras pruebas para fabricar micro robots en cadena

Tendrán el tamaño de una pulga y serán energéticamente autónomos


Científicos del proyecto I-SWARM han realizado las primeras pruebas de fabricación en cadena de micro robots del tamaño de una pulga. La finalidad de estas pruebas es que estas micro-máquinas comiencen a ser útiles cuanto antes, y puedan trabajar en grupos de hasta 100 de ellas, formando enjambres que realizarán funciones de vigilancia, microfabricación o medicina, entre otras. Los resultados de las primeras pruebas han demostrado que el método de fabricación en cadena funciona, aunque aún está por perfeccionar. Por Yaiza Martínez.



Diminutos robots del tamaño de una pulga podrían comenzar a ser fabricados en cadena muy pronto, Estos robots serán “liberados” para que viajen en enjambres, y programados para diversas aplicaciones, como la vigilancia, la micro fabricación o la medicina.

Sus medidas no excederán los de 65 miligramos de peso y los 23 milímetros cúbicos de volumen, pero contarán con los mismos elementos que un robot de tamaño corriente informa la revista Physorg.

Según publicó recientemente la revista especializada Journal of Micromechanics and Microengineering en un artículo titulado “Evaluation of building technology for mass producible millimeter-sized robots using flexible printed circuit boards”, las primeras pruebas de la tecnología de fabricación necesaria para producir estos robots minúsculos en cadena ya han sido realizadas.

Todo incluido

El robot prototipo creado, de menos de cuatro milímetros de largo por cada lado, es un auténtico microsistema que contiene sensores, sistema de gestión energética y sistema electrónico integrado.

La micro máquina está compuesta por diversos módulos que han sido ensamblados con una nueva técnica. Hasta ahora, los robots de un único chip habían presentado limitaciones significativas en su diseño y fabricación.

Pero ahora, los científicos, en lugar de utilizar la soldadura tradicional como medio para colocar los componentes eléctricos sobre un circuito impreso (un Printed Circuit Board o PCB), lo que han hecho es utilizar un adhesivo conductor para acoplar dichos componentes, en este caso a un circuito impreso que es flexible y de doble cara.

El PCB se utiliza en electrónica para sostener mecánicamente y conectar eléctricamente componentes electrónicos, a través de rutas o pistas de material conductor, grabados desde hojas de cobre laminadas sobre un sustrato no conductor.

Alimentados con energía solar

Los robots fabricados en un futuro en cadena estarán alimentados energéticamente por una célula solar situada en su parte alta, y se moverán gracias a tres patas vibrantes. Una cuarta pata vibrante será utilizada como sensor táctil.

Los investigadores explican que cada microrrobot se comunicará con muchos otros a través de sensores infrarrojos e interactuará con su entorno formando un grupo o enjambre capaz de generar en común un comportamiento más complejo que el que pueda desarrollar un robot individual aislado.

El marco de esta investigación es el proyecto I-SWARM, que son las siglas de “intelligent small-world autonomous robots for micro-manipulation” o “pequeños robots autónomos inteligentes destinados a la micro-manipulación”. El diseño de las micro máquinas está inspirado por el comportamiento de los insectos.

A grandes rasgos, I-SWARM trata de facilitar la producción en cadena de micro-robots que algún día serán utilizados como auténticos enjambres, compuestos por más de 100 unidades. Los micro robots que compongan dichos enjambres tendrán hetereogéneos, y se diferenciarán entre ellos en el tipo de sensores que lleven incorporados o en su potencia computacional.

La variedad de funcionamiento de cada unidad permitirá que el “enjambre” realice funciones de percepción colectiva o de inteligencia colectiva, entre otras.

Resultados de las pruebas

Según declaraciones para PhysOrg.com de uno de los ingenieros implicados en la presente investigación, el profesor Erik Edqvist de la Universidad Uppsala de Suecia, “es el momento de que los robots miniaturizados dejen los laboratorios y encuentren aplicaciones útiles”. El trabajo de estos científicos es un intento de poder fabricar en cadena dichos robots.

Durante las primeras pruebas de la técnica de fabricación, los investigadores encontraron algunos problemas. El mayor de ellos fue conectar el circuito integrado con el circuito impreso mediante el adhesivo conductor antes mencionado. Por otro lado, algunas células solares no se adhirieron bien.

Ahora mismo, además, la estructura de los robots está siendo plegada manualmente, pero los científicos esperan diseñar una herramienta capaz de plegarlos más rápido y de manera más ajustada.

Dado que muchas de estas complicaciones pueden ser corregidas, el resultado más importante de la prueba es que se ha demostrado que la tecnología de fabricación desarrollada puede aplicarse a este tipo de microsistemas, explica el Journal of Micromechanics and Microengineering.

Esto quiere decir que micro robots ya pueden ser armados utilizando una máquina de montaje. Hasta ahora, sólo habían podido ser fabricados de manera completamente manual, siendo ensamblados con soldador eléctrico.




sábado, 14 de noviembre de 2009

RPP Y RISITAS ANTE ESPIONAJE

Como siempre RPP noticias con su director Raúl Vargas, haciendo risitas ante el espionaje por parte de Chile. Si asi es, hoy Sábado 14-11-09 por la mañana escuche una entrevista que le hace este periodista a otros 2 expertos en el tema de espionaje, conjuntamente con Patricia del Río; pero lo extraño de esto, es que al final de la entrevista la volvio en un circo de RISAS.....tanto Vargas comno Patricia..........que es esto? una burla al País?.no le interesa el Perú, esto es gravisimo y nuestra patria estaría en una enorme desventaja ante una posible guerra, y para él-Vargas y su equipo- solo es risas....que les parece.

Más tarde escuche otra entrevista, de las BARRAS asesinas, y ahí si no hubo ninguna risa..........CONCLUSION: La patria en peligro" RISAS"............LAS bARRAS " Seriedad"...la verdad que este señor necesita un psiquiatra.risas - Imágenes de Google


miércoles, 11 de noviembre de 2009

El proceso creador está situado en el borde del caos

La creatividad es una característica básica de los sistemas complejos

El proceso creador está situado en el “borde del caos”. Emerge a partir de la “contradicción interna” entre elementos que se encuentran simultáneamente tanto en cooperación como en competencia. Un ejemplo lo constituye la evolución biológica, en donde hubo un proceso de innovación evolutiva seguida de otro proceso de extinción masiva. Otro ejemplo involucra la innovación tecnológica de las sociedades industriales: al principio, surgen algunos diseños diferentes (de bicicletas, automóviles, teléfonos celulares, computadoras), todos igualmente viables y –transcurrido un cierto tiempo– se produce una sobreabundancia de formas, sobreviven unas pocas de ellas y la innovación se focaliza en los relativamente pocos diseños que quedan. Ambos procesos son eminentemente creativos… Por Sergio Moriello.


Foto: Gongea Alexandru.Photoexpress.

Por el momento, no existe una definición precisa y absolutamente aceptada de lo que es un sistema complejo, sino que existen muchas propuestas alternativas. Esto se debe, probablemente, a que cubren toda la jerarquía de sistemas, desde los sistemas subatómicos hasta los sistemas sociales. No obstante eso, pueden darse algunas descripciones comunes...

En primer término, está compuesto por una gran cantidad de elementos (muchas veces más o menos parecidos, pero no siempre), generalmente estructurados de forma irregular. Por ejemplo, el número de células en un determinado organismo, o la cantidad de personas en una cierta sociedad, pero no una montaña de arena o un cristal de cuarzo.

En segundo lugar, cada elemento interacciona con sus vecinos de manera recíproca, interactiva y habitualmente no-lineal (ya que se crean lazos de realimentación, muchas veces incluso múltiples), y en distintas escalas espaciales y temporales, con lo cual se origina un comportamiento colectivo “emergente” que no puede explicarse a partir de dichos elementos tomados de forma aislada. Así, un gas se caracteriza por la presión y la temperatura, propiedades que sus elementos componentes (las moléculas) no poseen. Pero la interacción no es ordenada ni al azar; es decir, cada elemento no interacciona sólo con sus vecinos inmediatos (como en un cristal) ni con cualquier otro (como en un gas)... lo hace más bien con un pequeño número de vecinos (en algunos casos cercanos y en otros casos lejanos), formando redes.

Por último, es muy difícil predecir la dinámica futura de su desarrollo; o sea, es imposible –en la práctica- vaticinar lo que ocurrirá más allá de un cierto horizonte temporal (por cierto, relativamente corto). Es que su comportamiento colectivo puede modificarse drásticamente (con cambios, aceleraciones, ralentizaciones, oscilaciones, etc.) como consecuencia de su elevada sensibilidad a las condiciones iniciales. De allí que el análisis reduccionista se torna poco eficaz.

Procesos, que no productos

Los sistemas complejos existen como procesos y no como productos; no están terminados o definidos, no están “cristalizados”, sino que se caracterizan por un continuo desarrollo, en un perpetuo “estar haciéndose”. Se mantienen en un delicado equilibrio –dentro de ciertos límites– gracias a sus subsistemas de regulación y de control. Pero su comportamiento puede verse modificado –de forma imprevisible– por cualquier variación entre sus elementos componentes o entre sus relaciones.

Así, el desarrollo de esta clase de sistemas se caracteriza por la “intermitencia” (o fluctuación), aquella danza creadora en la que el orden y el desorden se alternan de manera cíclica para contribuir a la organización del sistema. Por eso, estos sistemas nunca llegan a un óptimo global, al estado de mínima energía. En general, se transforman progresivamente hasta que llegan al límite de su desarrollo potencial. En ese instante, sufren un desequilibrio, un desorden, una especie de ruptura que induce una fragmentación del orden pre-existente. Pero, después, comienzan a surgir regularidades que organizan al sistema de acuerdo con nuevas leyes, produciendo otra clase de desarrollo (ver La Auto-organización) [Moriello, 2003].

Las Luchas Internas

La antigua doctrina china de los complementos indica que todo contiene su opuesto. Así, cada cosa contiene a la vez la cosa misma y su opuesto; es una unidad de contrarios [Politzer, 2008, p. 174]. Como una vez aseveró el filósofo griego Heráclito, “lo vivo y lo muerto, lo joven y lo anciano coexisten en uno mismo; lo primero se transforma en lo segundo y lo segundo en lo primero”.

Es que, en el interior de cada sistema –y de forma permanente– se libra una “lucha” entre fuerzas diferentes y opuestas. Las fuerzas dinámicas de estabilidad y orden “tratan de generar” las condiciones de equilibrio y de organización. Las fuerzas dinámicas de inestabilidad y desorden, en cambio, “tratan de generar” condiciones de desequilibrio y de desorganización.

Es decir, existen antagonismos internos que dan origen al comportamiento global de dicho sistema. Sus elementos se encuentran tanto en convergencia (cooperación) como en divergencia (competencia), por lo que existe una especie de “contradicción interna”, un “desacuerdo consigo mismo”. Y es esta contradicción interna la que posibilita que las cosas cambien, se transformen y evolucionen, ya que el cambio se constituye como la solución de ese conflicto... [Politzer, 2008, p. 172 y 174]. En definitiva, dan origen al proceso creador.

Las contradicciones internas generan cambios que producen un reajuste, el cual se opone a dichas contradicciones. Pero esos mismos cambios son el origen de nuevas contradicciones, las cuales, a su vez, inducen nuevos cambios, y así siguiendo. No obstante, estos sucesivos cambios muestran una dirección definida, un “movimiento”, un cierto proceso auto-organizador; en otras palabras: representan un proceso dialéctico de desarrollo [Lange, 1975, p. 7]. Y, algunas veces, estas contradicciones terminan destruyendo el sistema existente y dando origen a la creación de un sistema nuevo con características muy diferentes a las de su predecesor [Politzer, 2008, p. 204].

La Auto-organización

La variación y el cambio son etapas inevitables e ineludibles por las cuales debe transitar todo sistema complejo para desarrollarse. Responden a una ley muy general: transformación no-lineal, con discontinuidades en su estructura funcional, a través de sucesivas reorganizaciones [García, 2006, p. 75/6]. Es que el orden y el desorden, la desorganización y la reorganización, se necesitan el uno al otro, son interdependientes y constituyen la potencialidad creadora. Aunque antagónicos son, al mismo tiempo, conceptos concurrentes y complementarios, aspectos constitutivos de la realidad.

En ciertos casos, un poco de desorden posibilita un orden diferente y, a veces, más rico. Así, por ejemplo, un organismo puede seguir viviendo –a lo largo de los años– a pesar de la continua renovación de sus células; una organización se perpetúa –durante décadas– aunque haya un periódico recambio de sus miembros; o una ciudad puede seguir existiendo –a lo largo de los siglos– a pesar de la constante renovación de sus elementos (personas, casas, edificios, plazas, calles, cines, etc.) [Moriello, 2004].

La capacidad de auto-organización se erige como parte esencial de cualquier sistema complejo. Es la forma como surge espontáneamente un orden en el sistema a partir de la interacción de sus elementos, el cual le permite modificarse y acoplarse cada vez más estrechamente con el entorno que lo rodea y contiene [Moriello, 2004]. Para alcanzar ese estado, son claves los procesos de realimentación, que posibilitan transmitir los cambios por todo el sistema con mucha fluidez.

En los fenómenos de auto-organización es fundamental la idea de estructuración –disipativa y espontánea– sobre la base de niveles. Las interrelaciones entre los elementos de un nivel originan nuevos tipos de elementos en otro nivel, los cuales se comportan habitualmente de una manera muy diferente (con una dinámica propia) [Resnick, 2001, p. 199]. Por ejemplo, de las moléculas a las macromoléculas, de las macromoléculas a las células y de las células a los tejidos. De este modo, el sistema auto-organizado se va construyendo paulatinamente como resultado de un orden incremental espacio-temporal que se crea en diferentes niveles, por estratos, uno por encima del otro y guiado por sus propias metas.

El Borde del Caos

Todo sistema lo bastante complejo –sea un organismo, una mente, una organización, una sociedad o un ecosistema– evoluciona de forma natural hacia y se mantiene dentro del estrecho dominio de “inestabilidad limitada”, oscilando periódicamente entre el orden inmutable y el desorden total, entre la constancia rígida y la turbulencia anárquica [Goodwin, 1998, p. 222]. Se trata de una condición especial, con suficiente orden (estabilidad) como para poder almacenar información-organización y desarrollar procesos, pero con una cierta dosis de desorden (inestabilidad) como para transmitir información-organización y ser capaz de adaptarse a situaciones novedosas.

Este difuso dominio transicional entre el orden y el caos es lo que se conoce como el “borde del caos” o el “estado crítico”. Es en esta delgada franja en donde los principales elementos del sistema encuentran el número adecuado de conexiones y mantienen una óptima comunicación, de forma tal que son máximas las capacidades potenciales de cambio y creación. En efecto, si bien muchas perturbaciones ejercen una pequeña influencia sobre el sistema, algunas pocas pueden generar cascadas de cambios (fenómenos de avalancha o de catástrofe). Es aquí donde se ubican los fenómenos emergentes propios de los sistemas vivientes, organizacionales y sociales [Moriello, 2004].

El comportamiento emergente será tanto más impredecible cuanto más complejo sea el sistema. Puede observarse, por ejemplo, en las hormigas (así como también en otros insectos sociales, como las termitas y las abejas) [Goodwin, 1998, p. 92/5 y 230/3]. Tomadas de manera individual no son para nada inteligentes. No obstante, al juntarse un suficiente número de ellas se observará una actividad colectiva de lo más interesante e inesperada. Cuando la densidad de hormigas es baja, la colonia se comporta de modo caótico, ya que hay escasos individuos y pocos encuentros entre ellas.

Pero, a medida que la densidad se incrementa, los encuentros se multiplican de manera exponencial y los patrones de actividad comienzan a distribuirse de manera más uniforme. Cuando la densidad alcanza un determinado valor umbral –súbitamente– estos patrones rítmicos se propagan y afectan a toda la colonia. En este punto, el caos vira a orden y el sistema se comporta de un modo colectivo no predecible a partir del comportamiento de sus elementos individuales. Podría concluirse, entonces, que las colonias regulan su propia densidad generando un orden emergente –un comportamiento global coherente– que las abarca totalmente y que las sitúa, de manera dinámica, en el borde del caos.

El Proceso Evolutivo

El proceso evolutivo hace referencia a la dinámica de transformación que experimenta un sistema complejo durante su desarrollo temporal. No es continuo y gradual, sino que se verifica a través de una sucesión de desequilibrios y reorganizaciones [García, 2000, p. 77], exhibiendo toda la creatividad de la que hace gala la Naturaleza. Aunque desordenado e impredecible, es un proceso cibernético, ya que parece revalidar constantemente sus modelos y autocorregirse por supresión de errores. Y se verifica en muchos tipos de sistemas (biológicos, psicológicos, sociológicos, tecnológicos, etc.).

El patrón de desarrollo viable que permite la evolución creativa de un sistema desde la relativa simplicidad hasta la relativa complejidad se puede concebir como el resultado de un proceso dialéctico de diferenciación (de estructuras) e integración (de funciones) [Heylighen, 2008]. La diferenciación produce variedad, división del trabajo y desorden; mientras que la integración produce constricción, incremento en el número o en la intensidad de las conexiones y orden.

Ambos procesos producen una jerarquía de metasistemas anidados que tienden a auto-reforzarse [Heylighen, 1988]. Cada nuevo nivel trasciende al anterior, así como lo incluye. O sea, cada nuevo nivel va más allá del anterior (en cierto sentido lo supera) y, a la vez, lo incluye en su propia organización. En este sentido, resulta bastante evidente cómo la sociedad “es más” que el individuo, pero que igualmente lo incluye en su conformación.

Un ejemplo lo constituye la evolución biológica, en donde hubo un proceso de innovación evolutiva seguida de otro proceso de extinción masiva. Otro ejemplo involucra la innovación tecnológica de las sociedades industriales: al principio, surgen algunos diseños diferentes (de bicicletas, automóviles, teléfonos celulares, computadoras), todos igualmente viables y –transcurrido un cierto tiempo– se produce una sobreabundancia de formas, sobreviven unas pocas de ellas y la innovación se focaliza en los relativamente pocos diseños que quedan [Lewin, 2002, p. 90]. Ambos procesos son eminentemente creativos…


* Sergio A. Moriello es Ingeniero en Electrónica, Postgraduado en Periodismo Científico y en Administración Empresarial y Magister en Ingeniería en Sistemas de Información. Lidera GDAIA (Grupo de Desarrollo de Agentes Inteligentes Autónomos, UTN-FRBA) y es vicepresidente de GESI (Grupo de Estudio de Sistemas Integrados). Es autor de los libros Inteligencias Sintéticas (Alsina, 2001) e Inteligencia Natural y Sintética (Nueva Librería, 2005).


Bibliografía

1. García, Rolando (2006): Sistemas Complejos. Barcelona, Editorial Gedisa.
2. García, Rolando (2000): El conocimiento en construcción. Barcelona, Editorial Gedisa.
3. Goodwin, Brian (1998): Las Manchas del Leopardo. Barcelona, Editorial Tusquets.
4. Heylighen F. (2008): Five Questions on Complexity. C. Gershenson (ed.): Complexity: 5 questions, Automatic Press / VIP.
5. Heylighen, F. (1988): Building a Science of Complexity
6. Proceedings of the 1988 Annual Conference of the Cybernetics Society.
7. Lange, Oskar (1975): Los “todos” y las partes. México, Fondo de Cultura Económica.
8. Lewin, Roger (2002): Complejidad. Barcelona, Tusquets Editores, 2ª edición.
Moriello, Sergio (2004): Ingeniería genética y nanotecnología pueden alumbrar nuevas especies artificiales. Sitio Tendencias 21, 11 de septiembre.
Moriello, Sergio (2003): Sistemas complejos, caos y vida artificial. Sitio Red Científica, marzo.
9. Resnick, Mitchel (2001): Tortugas, Termitas y Atascos de Tráfico. Barcelona, Editorial Gedisa.
10. Politzer, Georges (2008): Principios Elementales de la Filosofía. Buenos Aires, Editorial Gradifco.